International Journal of Thermal Sciences 49 (2010) 603-610

International Journal of Thermal Sciences

journal homepage: www.elsevier.com/locate/ijts

International

Contents lists available at ScienceDirect Journal of

Thermal

Sciences.

The effects of variable fluid properties on the hydro-magnetic flow
and heat transfer over a non-linearly stretching sheet

K.V. Prasad ?, K. Vajravelu®*, P.S. Datti ¢

2 Department of Mathematics, Central College Campus, Bangalore University, Bangalore 560001, India
b Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA
“TLER. Centre for Applicable Mathematics, Sharada Nagar, Yelahanka New Town, Bangalore 560065, India

ARTICLE INFO

ABSTRACT

Article history:

Received 10 April 2009

Received in revised form

20 August 2009

Accepted 22 August 2009
Available online 8 September 2009

Keywords:

Boundary layer flow
Similarity solution

Variable viscosity

Variable thermal conductivity
Stretching sheet

The influence of temperature-dependent fluid properties on the hydro-magnetic flow and heat transfer
over a stretching surface is studied. The stretching velocity and the transverse magnetic field are
assumed to vary as a power of the distance from the origin. It is assumed that the fluid viscosity and the
thermal conductivity vary as an inverse function and linear function of temperature, respectively. Using
the similarity transformation, the governing coupled non-linear partial differential equations are
transformed into coupled non-linear ordinary differential equations and are solved numerically by the
Keller-Box method. The governing equations of the problem show that the flow and heat transfer
characteristics depend on five parameters, namely the stretching parameter, viscosity parameter,
magnetic parameter, variable thermal conductivity parameter, and the Prandtl number. The numerical
values obtained for the velocity, temperature, skin friction, and the Nusselt number are presented
through graphs and tables for several sets of values of the parameters. The effects of the parameters on
the flow and heat transfer characteristics are discussed.
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1. Introduction

The problem of flow and heat transfer in the boundary layer
adjacent to a continuous moving surface has attracted many
researchers because of its numerous applications in engineering/
manufacturing processes, namely continuous casting, glass fiber
production, metal extrusion, hot rolling of paper and textiles, and
wire drawing. The physical situation was recognized as a backward
boundary layer problem by Sakiadis [1,2]. He was the first, among
others, to investigate the flow behavior for this class of boundary
layer problems. In his pioneering papers, solutions were obtained
to the boundary layer flows on continuous moving surfaces which
are substantially different from those of boundary layer flows on
stationary surfaces. The thermal behavior of the problem was
studied by Erickson et al. [3] using finite difference and integral
methods, and experimentally verified by Tsou et al. [4]. Thereafter
various aspects of the above boundary layer problem on continuous
moving surface were considered by many researchers (Crane [5],
Grubka and Bobba [6], Vleggaar [7], Soundalgekar and Ramana
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Murthy [8], Gupta and Gupta [9], Chen and Char [10], Chen and
Strobel [11]).

All the above investigators restricted their analyses to flow and
heat transfer in the absence of magnetic field. But in recent years,
we find several applications in polymer industry (where one deals
with stretching of plastic sheets) and metallurgy where hydro-
magnetic techniques are being used. To be more specific, it may be
pointed out that many metallurgical processes involve the cooling
of continuous strips or filaments by drawing them through
a quiescent fluid and that in the process of drawing, these strips are
sometimes stretched. Mention may be made of drawing, annealing,
and thinning of copper wires. In all these cases, the properties of
final product depend to a great extent on the rate of cooling by
drawing such strips in an electrically conducting fluid subject to
a magnetic field and the characteristics desired in the final product.
In view of these applications Pavlov [12] investigated the flow of an
electrically conducting fluid caused solely by the stretching of an
elastic sheet in the presence of a uniform magnetic field. Chakra-
barti and Gupta [13] considered the flow and heat transfer of an
electrically conducting fluid past a porous stretching sheet and
presented the analytical solution for the flow and the numerical
solution for the heat transfer problem. Andersson [ 14] extended the
work of Chakrabarti and Gupta [13] to MHD flow of a non-New-
tonian viscoelastic fluid over an impermeable stretching sheet and
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found that the magnetic parameter has the same effect as the
viscoelastic parameter. Andersson [15] obtained an analytical
solution of the magneto-hydro-magnetic flow using a similarity
transformation for the velocity and temperature fields. Chiam [16]
investigated the boundary layer flow of Newtonian fluid: The flow
is caused by sheet stretching according to a power law velocity in
the presence of a transverse magnetic field. Chamkha [17] and Abo-
Eldlahab [18] considered the problems related to hydro-magnetic
three-dimensional flow on a stretching surface. Further, Ishak et al.
[19] studied the effect of a uniform transverse magnetic field on the
stagnation point flow toward a vertical stretching sheet. Ali [20]
extended the work of Chiam [16] to heat transfer characteristics by
assuming the non-linear magnetic field strength and obtained
similarity solutions for different thermal boundary conditions.

In all the above mentioned papers, the thermophysical proper-
ties of the ambient fluid were assumed to be constant. However, it
is well known that (Herwig and Wickern [21], Lai and Kulacki [22],
Takhar et al. [23], Pop et al. [24], Hassanien [25], Subhas Abel et al.
[26], Seedbeek [27], Ali [28], Andersson and Aarseth [29] Prasad
et al. [30]) these physical properties may change with temperature,
especially for fluid viscosity and thermal conductivity. For lubri-
cating fluids, heat generated by internal friction and the corre-
sponding rise in the temperature affects the physical properties of
the fluid, and the properties of the fluid are no longer assumed to be
constant. The increase in temperature leads to increase in the
transport phenomena by reducing the physical properties across
the thermal boundary layer, and so the heat transfer at the wall is
also affected. Therefore to predict the flow and heat transfer rates, it
is necessary to take into account the variable fluid properties. In
view of this, the problem studied here extends the work of Vajra-
velu [31] by considering the temperature-dependent variable fluid
properties. Thus in the present paper, we study the effects of
variable viscosity and variable thermal conductivity on the hydro-
magnetic flow and heat transfer over a non-linear stretching sheet.
The coupled non-linear partial differential equations governing the
problem are reduced to a system of coupled non-linear ordinary
differential equations by applying a suitable similarity trans-
formation. These non-linear coupled differential equations are
solved numerically by the Keller-Box method for different values of
the parameters.

2. Mathematical formulation

Consider a steady, two-dimensional boundary layer flow of an
incompressible electrically conducting fluid, in the presence of
a transverse magnetic field B(x) with variable fluid properties, past
an impermeable stretching sheet coinciding with the plane y = 0.
The origin is located at the slit, through which the sheet is drawn
through the fluid medium. The x-axis is taken in the direction of the
main flow along the sheet, and the y-axis is normal to it. Two equal
and opposite forces are applied along the x-axis so that the wall is
stretched, keeping the origin fixed. The continuous stretching
surface is assumed to have a power law velocity u = u,, = bx™,
where b is a constant and m is an exponent. Here, we assume that
the induced magnetic field produced by the motion of an electri-
cally conducting fluid is negligible. This assumption is valid for
small magnetic Reynolds number. Further, since there is no external
electric field, the electric field due to polarization of charges is
negligible. The viscous dissipation and the ohmic heating terms are
not included in the energy equation since they are, generally small.
Under the foregoing assumptions and invoking the usual boundary
layer approximation, the governing equations of mass, momentum
and energy for the problem under consideration, in the presence of
variable fluid properties (i.e. fluid viscosity and thermal conduc-
tivity), can be written as
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where, u and v are the velocity components in the streamwise x
and cross-stream y directions, respectively. Here p. is the
constant fluid density and u is the coefficient of viscosity, and u is
considered to vary as an inverse function of temperature (Lai and
Kulacki [22]) as
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e #_[1 +0(T — Tx)], (4)
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This can be rewritten as

1

ﬁ = Cl(T— Tr)a
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where, a = — and Ty = Tw — . (5)
P 0

Here, both a and T; are constants, and their values depend on the
reference state and the small parameter 4, reflecting a thermal
property of the fluid. In general, a > 0 corresponds to liquids and
a < 0 to gases when the temperature at the sheet (T,,) is larger than
that of the temperature at far away from the sheet (T.). The
correlations between the viscosity and the temperature for air and
water are given below:

For air : % = —123.2(T — 742.6), based on

T = 293 K(20°C),

1

and for water : e —29.83(T — 258.6), based on

T = 288 K(15°C).

The reference temperatures selected here for the correlations
are practically meaningful. The viscosity of a liquid usually
decreases with increase in temperature while it increases for gases,
when (T, — Tx) is positive.

In the above equations, ¢ is the electrical conductivity, and B(x)
is the strength of the magnetic field. The special form of the
magnetic field B(x) = Box™ /2 is chosen to obtain a similarity
solution. This form of B%(x) has also been considered by Chiam [16]
in MHD flow past a moving flat plate. Here, C, is the specific heat at
constant pressure and k(T) is the temperature-dependent thermal
conductivity. We consider the temperature-dependent thermal
conductivity relationship in the form (Chiam [32])

K(T) = ka (1+ AiT (T-Ta)) (6)

where AT = Ty — Tw, ¢ = ky—Kko [k is assumed to be small in

magnitude and, k,, and k. are respectively the thermal conduc-

tivities of the fluid at the sheet and far away from the sheet.

Substituting equations (4)-(6) in Equations (2) and (3), we obtain:
ou ou
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oT ke, edT\ 0T e 92T
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The appropriate boundary conditions on the velocity and the
temperature fields are
U=1uy =bx", v=0 T=Tyaty =0,
9

u—0, T—Tx as y— «,

where b is a stretching rate [(1/s) for m = 1]. It should be noted that
the positive or negative m indicates respectively that the surface is
accelerated or decelerated from the extruded slit.

Now we transform the system of equations (1)-(3) into
a dimensionless form. To this end, let the dimensionless similarity
variable be

n :% mTH\/R—e,ﬁ where Rey = U;V(x) X, (10)

©

and the dimensionless stream function f{n) and dimensionless

temperature 6(n) are

fn) = ¥(xy)/ [uwx(Rex) 7], (11)

0(n) = (T—Tx)/(Tw — Tx), (12)

where the dimensionless stream function y(x,y) identically satisfies
the continuity equation (1) with

Uu=_—and v = ——. (13)

By using (10)-(12), the momentum equation (7) and energy
equation (8) can be written as:

1 San(m)0y(n)

ﬁfnz("l) —fmfg(n) = L gén) Som (M) +m — Mnfy(),
(14)
[1+ e0(m)]0n(m) = —eb2 () — Prf () (), (15)
1.0
—————— p=1.0, €=0.0, Pr=1.0, 6} = 0.0
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Fig. 1. Horizontal velocity profiles for different values of magnetic parameter.

and they are subjected to boundary conditions

fotm) =1, f(m) =0, () =1atn=0, (16)

fa(m) =0, 0(n) =0 as n— . (17)

Here, the subscript n denotes the differentiation with respect to
1. The parameters 3, 0, Mn, and Pr are respectively, the stretching
parameter, fluid viscosity parameter, magnetic parameter, and the
Prandtl number, which are defined as follows:

g — 2m o Tr—Te _ 1 2
Tm+1 T T Tw-Te (Tw—Twe)1+m
20B} fho Cp

The value of 6, is determined by the viscosity of the fluid under
consideration and the operating temperature difference. If 6, is large,
in other words, if (T — Ty,) is small, the effects of variable viscosity
on the flow can be neglected. On other hand, for smaller values of 6,
either the fluid viscosity changes markedly with temperature or the
operating temperature difference is high. In either case, the effect of
the variable fluid viscosity is expected to be very important. Also let
us keep in mind that the liquid viscosity varies differently with
temperature compared to the gas viscosity. Therefore it is important
to note that 6, is negative for liquids and positive for gases. It should
be noted that the velocity u = u,,(x) used to define the dimensionless
stream function f{n) in the equation (11) and the local Reynolds
number in equation (10) is the velocity of the moving surface that
drives the flow. This choice contrasts with conventional boundary
layer analysis in which the free stream velocity is taken as the
velocity scale. Although the transformation defined in (10) and (11)
can be used for arbitrary variations of u,(x), the transformation
results in a true similarity problem only if u,, varies as bx™. Here m is
an arbitrary constant, not necessarily an integer. Such surface
velocity variations are therefore required for the ODE (14) to be valid.
Non-similar stretching sheet problems, which require the solution
of partial differential equations rather than ODEs, were considered
by Jeng et al. [33] for Newtonian fluids.

It is worth mentioning here that §, — o« as 6 — 0. In this
situation for the constant magnetic field case, the equations (14)

1.2 Mn=0.0 - Mn=1.0,Pr=1.0, :=0.0, 0;' =0

1.0
0.8

0.6

f,(n)

$=1.5,1.0,0.0,-1.0,-1.5
0.4

0.2 1

Fig. 2. Horizontal velocity profiles for different values of stretching parameter and
magnetic parameter.
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Fig. 3. (a) Horizontal velocity profiles for different values of fluid viscosity parameter. (b) Horizontal velocity profiles for different values of fluid viscosity parameter. (c) Horizontal
velocity profiles for different values of fluid viscosity parameter. (d) Horizontal velocity profiles for different values of fluid viscosity parameter.

and (15) reduce to those of Chakrabarti and Gupta [13], and for
m = 0 those of Vajravelu [31]. In the presence of a variable magnetic
field and when there is no heat transfer, equation (14) reduces to
that of Chiam [16]. Further, when the variable thermal conductivity

1.0

[ ——B=-15, B=00,--=p=10, Pr=1.0, 0,'=0, £= 0.0 ]

6(n)

Fig. 4. Temperature profiles for different values of magnetic parameter and stretching
parameter.

parameter and the magnetic parameter are absent, equations (14)
and (15) are similar to the ones studied by Crane [5] and Grubka
and Bobba [6].

The physical quantities of interest here are the skin friction
coefficient Cyand the Nusselt number Nu; and they are defined by

_ 21p(x) qwX

R’ Tz T R (T —Ta)

(19)

where t(X) = —uw(0u/dY)at y—o and qu(x) = —ke (3T/3Y)at y—o.
Using equations (4), (5), (10)-(12) and (18), the skin friction and
the Nusselt number can be written as

Gv/Rex = A 0.0,

(

Nu
Rey

1
- m; 0,(0, ;).

3. Numerical procedure

By applying similarity transformation to the governing equa-
tions and the boundary conditions, the governing equations are
reduced to a system of coupled, non-linear differential equations
with appropriate boundary conditions. Finally the system of simi-
larity equations with the boundary conditions is solved numerically
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Fig. 5. (a) Temperature profiles for different values of fluid viscosity parameter.
(b) Temperature profiles for different values of fluid viscosity parameter.

by the Keller-Box method (Cebeci and Bradshaw [34], Prasad et al.
[30] Datti and Prasad [35]). This method is unconditionally stable
and has a second order accuracy with arbitrary spacing. First, we
write the transformed differential equations and the boundary
conditions in terms of first order system, which is then converted to
a set of finite difference equations using central differences. Then
the non-linear algebraic equations are linearized by Newton’s
method and the resulting linear system of equations is then solved
by block tri-diagonal elimination technique. For the sake of brevity,
the details of the numerical solution procedure are not presented
here. It is worth mentioning that a uniform grid of Ap = 0.01 is
satisfactory in obtaining sufficient accuracy with an error tolerance
less than 1078, To validate the present results, a comparison is made
with the known results of Crane [5] and Soundalgekar and
Murthy [8].

4. Results and discussion

In order to have an insight in to the effects of the parameters on
the MHD flow and heat transfer characteristics, we present the
numerical results graphically in Figs. 1-8 and in Table 1 for several

1.0

~~~~~ p=-1.0, $=0.0,--- p=10,¢=0.0,0 =0.0, Mn =0.0

o(m)

Fig. 6. Temperature profiles for different values of Prandtl number (Pr).

sets of values of the temperature-dependent fluid property
parameters. We consider only the case of a liquid for which 6, < 0.
We can have a glimpse of the physical layout of the boundary layer
structure which develops near the slit by observing the horizontal
profiles in Figs. 1-3.

Fig. 1 illustrates the effect of the magnetic parameter Mn on the
horizontal velocity fy(n) in the presence/absence of stretching
parameter. From Fig. 1 we see that f;(n) is considerably reduced with
an increase in the magnetic parameter. It clearly indicates that the
transverse magnetic field opposes the transport phenomena. This is
due to the fact that, the transverse magnetic field has a tendency to
create a drag force, known as the Lorentz force, and hence an increase
in the absolute value of the velocity gradient at the surface. That is,
the thickness of the boundary layer is reduced for higher values of the
magnetic parameter Mn. This behavior is clearly noticeable when the
surface is accelerated (8 > 0) from the extruded slit.

The effect of the stretching parameter ¢ on the horizontal
velocity fy(n) in the presence/absence of the magnetic parameter
Mn is depicted in Fig. 2. It is observed that an increase in the

[ p=-1.0,

p=0.0, --- p=1.0, Pr=1.0,0 = -5.0,Mn = 0.0

08 1\

064 -\

6(n)

0.4+

0.2

0.0

Fig. 7. Temperature profiles for different values of variable thermal conductivity
parameter (¢).
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57 — Mn=00, - Mn=1.0,c=0.0, Pr=1.0 ‘

+£,,(0)

1 p=-1.0, 0.0,1.0

'er

Fig. 8. Influence of Variable viscosity parameter, Stretching parameter and magnetic
parameter on the dimensionless skin friction coefficient.

stretching parameter § reduces the momentum boundary layer
thickness, which tends to zero as the variable 7 increases from the
boundary. Physically, § < 0 implies the surface decelerating case,
6 = 0 implies the continuous movement of a flat surface, and § > 0
implies the surface accelerating case. A decrease in f;(n) discloses
the fact that the effect of § is to decelerate the velocity and hence
reduce the momentum boundary layer thickness.

Fig. 3(a)-(c) respectively, show the effects of a decelerating
surface (8 < 0), continuously moving surface (8 = 0), and an accel-
erating surface (6 > 0) from the slit, on the horizontal velocity f;(n)
for various values of the fluid viscosity parameter 6, with Pr = 1.0.
From these figures it can be seen that f,(n) decreases asymptotically
to zero as the variable 7 increases. However, in the decelerating
surface case (8 < 0), the velocity profile increases from its value one
and then decays to zero. The effect of increasing values of the fluid
viscosity parameter 6, is to decrease the momentum boundary layer
thickness. Also, as 6§, — 0, the boundary layer thickness decreases
and the velocity distribution is asymptotically tends to zero [see
Fig. 3(d)]. This is due to the fact that, for a given fluid (air or water),
when ¢ is fixed, smaller 6, implies higher temperature difference
between the wall and the ambient fluid. The results presented in
this paper demonstrate clearly that 6,, the indicator of the variation
of fluid viscosity with temperature, has a substantial effect on the
horizontal velocity f,(n) and hence on the skin friction.

In Figs. 4-7 the numerical results for the temperature 6(n) for
several sets of values of the governing parameters are presented.
Fig. 4 illustrates the effect of the stretching parameter § and the
magnetic parameter Mn on 6(n). The effect of increasing values of
the stretching parameter { is to increase the temperature (7). This
is true even in the presence of the magnetic field. The effect of
increasing values of the magnetic parameter Mn is to increase the
temperature 6(n). Of course, the effect of Mn on the thermal
transport, if any, is only an indirect effect through the changes in
fn) and fy(n). Fig. 5(a) and (b) exhibit the temperature distribution
0(n) for several sets of values of the fluid viscosity parameter 6;, the
stretching parameter, § and the Prandtl number Pr. From the

Table 1
Skin friction and wall temperature gradient for different values of the physical parameters.
€ 1/6, Pr  Mn=0.0 Mn = 1.0
g=-1.0 =00 =10 g=-1.0 =00 =10
fn(0) 0y (0) fan(0) ty (0) fan(0) 0y (0) fm(0) 0y (0) fan(0) 0y (0) fan(0) 0y (0)
0 0 0.7 -2.89E-04 -056514 -0.6278 —0.49630 -1.00017 -045828 -0.85112 -0.43954 -1.16333 -0.41274 14142 -0.39357
1 —0.70710 —0.62779 —0.58267 —0.56403 —0.53023 —0.50546
2 —1.06000 —0.96618 -0.91126 —0.90008 —0.8563 -0.82311
3 -1.32577 —1.22447 -1.16517 —1.15994 -1.11198 —1.07522
4 —1.54675 —1.44128 -1.37933 —1.37824 -1.32779 —1.28886
5 —1.74012 -1.63177 —1.56801 —1.56996 —1.517807 —1.47739
0 0 1 —2.89E-04 -0.70711 -0.6278 -0.6278 —1.00017 -0.58267 -0.85112 -0.56403 —1.16333 -0.53023 —1.14142 —0.50546
0.1 —0.65991 —0.58461 —0.51833 —-0.52357 —0.49167 —0.46836
0.2 —0.61986 —0.54793 —0.50716 —0.48919 —0.45893 —0.43688
0.3 —-0.58522 —-0.5163 —0.46628 —0.45956 —-0.43074 —0.40979
03 0 0.7 -—2.89E-04 -046538 -0.6278 —0.40634 -1.00017 -0.374 —0.85112 -0.35694 —1.16333 -0.33471 -1.41421 -0.31897
1 —0.58522 —0.5163 —0.47728 —0.45956 —0.43074 —0.40979
2 —0.88383 —0.80082 —0.75261 —0.74118 —0.70291 —-0.67399
3 —1.10743 -1.018 —0.96572 —0.9597 —0.91752 —0.88526
4 —1.29355 —1.20025 —1.14549 —1.14329 —1.09877 —1.06449
5 —1.4563 —1.36032 —1.30387 —1.30449 —1.25838 —1.22271
0 -5 1 —3.85E-04 —0.69853 —0.703 -0.61419 -1.11251 -0.56726 -0.95323 -0.5446 —-1.29339 -0.51059 —1.56695 —0.48582
0.1 —3.87E-04 -0.65141 -0.70227 -0.57145 -1.1116 -0.52704 -0.95216 —0.50494 -1.29229 -0.47293 -1.56586 —0.44971
0.2 —3.87E-04 -0.61137 -0.70161 -0.53515 -1.11078 —-0.49289 -0.95119 -047127 -1.29131 -0.44099 -1.5649 —0.41908
0.3 —3.88E-04 -0.57682 —0.701 —0.50386 —1.11004 —-0.46347 —0.95029 —0.44227 —-1.29043 -0.4135 —1.56404 —0.39275
0 -10 1 —3.35E-04 -0.70282 -0.66654 —0.62086 —1.05804 —0.57477 —0.69664 057732 -1.23039 -0.5201 —1.49289 —-0.49532
-5 —3.84E-04 -0.69853 —0.703 -0.61419 -1.11251 -0.56726 -0.73755 -0.56798 —1.29339 -0.51059 —1.56695 —0.48585
-1 —8.64E-04 -0.66465 —-093777 -0.56828 —-1.46636 —0.51781 -0.99445 -0.50708 -1.70094 -0.45123  -2.05077 —0.42782
-0.5 —-0.00145 -0.624 -1.15163 -0.5234  -1.79737 -047279 -1.21978 -0.45474 -2.08276 -0.40308 -2.52268 —0.44654
-0.1 —0.00433  -0.48602 -2.15181 -043116 -3.37462 -0.32524 -2.29136 -0.46648 -3.91992 -0.27761 -4.7866  —0.43615
03 -5 0.7 -—-3.77E-04 -0.4562  -0.69821 -0.39484 -1.10694 -0.36204 -0.94641 -0.34273 -1.28691 -0.32111 -1.56079 —0.3059
1 —3.87E-04 -0.57682 -0.701 —0.50386 —1.11004 -0.46347 -0.95029 -0.44227 -1.29043 -0.4135 —1.56404 -0.39275
2 —3.82E-04 -0.87756 -0.7076  —0.78788 —1.11796 —-0.73698 —-0.96031 -0.72124 -1.30019 -0.68176  —1.57347 —0.65205
3 —3.75E-04 -1.10227 -0.7119 -1.00486 —1.12351 —0.94925 -0.96698 —0.93922 —-1.30725 -0.89528 —1.58063 —0.86181
4 —3.69E-04 -1.28907 -0.71504 -1.18692 -1.12777 -1.12842 -09718 -1.12255 -1.31267 -1.07591 -1.5863  -1.04014
5 —3.66E-04 —1.45229 -0.71748 -1.34684 -1.13121 -1.28632 -0.97549 -1.28359 -1.31703 -1.23507 —1.59098 -1.1977
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graphical representation, we observe that the effect of increasing
values of the fluid viscosity parameter 6, is to enhance the
temperature. This is due to the fact that an increase in the fluid
viscosity parameter 6, results in an increase in the thermal
boundary layer thickness. This is even true for the higher values of
the Prandtl number Pr [see Fig. 5(b)]. The variations of f(n) for
different values of the Prandtl number Pr and the stretching
parameter ( are displayed in Fig. 6. The effect of increasing Pr is to
decrease f(n). That is, an increase in Pr means decrease in the
thermal conductivity k., and hence, there would be a decrease of
thermal boundary layer thickness. The effect of the variable
thermal conductivity parameter ¢ on (n) can be seen in Fig. 7. From
this figure we observe that §(n) increases with increasing .

Fig. 8 displays the variation of skin friction —f;,(0) against the fluid
viscosity parameter for several sets of values of the stretching
parameter and the magnetic parameter. Note that the skin friction
decreases with an increase in the viscosity parameter or the
stretching parameter. This observation is true even in the presence of
the magnetic field. The impact of all the physical parameters on the
skin friction [—f;,(0)] and the wall temperature gradient [—6,(0)] may
be analyzed from Table 1. From Table 1 it can be seen that the effect of
the magnetic parameter, stretching parameter, and the fluid viscosity
parameter is to decrease the skin friction and to enhance the wall
temperature gradient. This phenomenon is true even in the presence
of the variable thermal conductivity. The effect of the Prandtl number
is to decrease the wall temperature gradient even in the presence of
the variable viscosity and the variable thermal conductivity.

5. Conclusions

(i) The effect of the magnetic field and the variable viscosity is to
decrease the velocity and the skin friction. However we see
opposite effects on the dimensionless temperature and the
rate of heat transfer.

(ii) The velocity and the skin friction are reduced by the stretching
parameter, while its effect is to increase the dimensionless
temperature and the rate of heat transfer. This is true even in
the presence of the temperature-dependent fluid properties.

(iii) The effect of the Prandtl number is to decrease the thermal
boundary layer thickness and the wall temperature gradient in
the presence of the other physical parameters of the model.
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Nomenclature

a constant

b stretching rate, positive constant
B(x) magnetic field

Cr skin friction

G specific heat at constant pressure
f dimensionless velocity variable

h(x) heat transfer coefficient
k(T) thermal conductivity

Ky thermal conductivity at the sheet

Ko thermal conductivity far away from the sheet
m index of power law velocity

Mj, magnetic parameter

Nuy Nusselt number

Pr Prandtl number

Qw local heat flux at the sheet

Rex local Reynolds number
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T temperature variable n similarity variable
T; transformed reference temperature Y kinematic viscosity
Tw given temperature at the sheet B stretching parameter
Te constant temperature of the fluid far away from the sheet ) thermal property of the fluid
X horizontal distance n dynamic viscosity
y vertical distance Moo constant value of dynamic viscosity
u velocity in x direction U} stream function
Uy velocity of the sheet p density
\Y velocity in y-direction Po constant fluid density
o electric conductivity
Greek symbols Txy shear stress
AT sheet temperature 0 dimensionless temperature variable
€ small parameter 0r transformed dimensionless reference temperature.
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